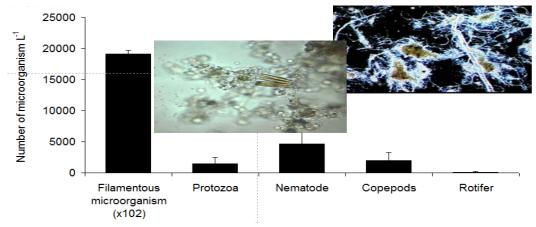
# **Management of Indoor Shrimp Culture in Biofloc Based Systems**




Tzachi M. Samocha

Marine Solutions & Feed Technology - 4110 E. Colt Shadow Ln., Spring, TX 77386 832-823-4223 (O); 361-728-3560 (C); Tzachi.Samocha@gmail.com

Indoor Shrimp Farming Workshop – September 14-15, 2018, Kentucky State University, Frankfort, Kentucky

# **Biofloc-dominated Systems**

- Previous reports showed the feasibility of producing high shrimp yields in no water exchange in biofloc-dominated systems
- Biofloc is assemblage of living (bacteria, algae, cyanobacteria, fungi, protozoans) & non-living components (uneaten feed, waste products)



Emerenciano et al., 2011 WAS Natal, Brazil

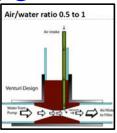
# System Management – Major Factors

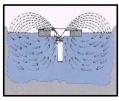
- Seedstock
- Water Source & Salinity
- Dissolved Oxygen & Water Mixing
- ➢ Water Temperature
- Nitrogen Species: TAN, NO<sub>2</sub>, NO<sub>3</sub> & Denitrification
- PH, Alkalinity & Particulate Matter
- Growth Monitoring, Feed & Feed Management
- Waste Disposal
- Alarm Systems & Power Backup
- Natural Light & Microalgae
- Biosecurity, Probiotics & Diseases

## System Management Seedstock

- Quality -- Health, PL Age & Average Weight
- Transportation Options
- Acclimation




- SPF & SPR -- Fast Growth vs Taura Resistant
- PL Size (Length vs Wt.) & Feed Management
   Water Source & Salinity
- Preparation (Filtration, Disinfection, Probiotics)
- > NSW vs ASW
  - Ionic Balance
  - Salinity Impact on Nitrogen Species Toxicity

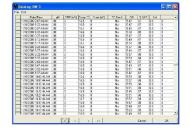

**Dissolved Oxygen & Mixing** – Available Options

- > Blower-driven: Air Diffusers, Air Stones & ALP -Fouling issues & Expected yields
- > **Pump-driven**:

*Venturi Injectors* -- Can serve to mix air, pure oxygen & to add chemicals; Can support yields of about  $6 \text{ kg/m}^3$  when operated with atmospheric air under no water exchange

*a<sup>3</sup> Injectors:* -- Excellent oxygenation & mixing capacity; Support yields of  $> 9 \text{ kg/m}^3$  in no water exchange when using atmospheric air only Fountain Type Aerators – be aware of potential shrimp injuries






Use of Pure Oxygen:

High-density no exchange biofloc systems with shrimp load > 4 kg/m<sup>3</sup> have high oxygen demands; Availability of pure oxygen on-site is highly recommended in case of emergency (power failure, algal bloom crash, overfeeding, excessive dose of organic carbon, etc.)



#### System Management **Online Oxygen Monitoring System:** Helps maintain optimal DO & minimizes shrimp stress and/or crop losses - Extremely important tool in no-exchange, high-density, biofloc systems -Need for a dependable system that alerts operators of low DO & implements corrective measures Optical DO sensors can withstand exposure to heavy fouling -- The monitoring system software can be programmed to send information to multiple sites via land line, cellphone, or the internet





#### Water Temperature:

- Needs & Implications
  - Optimal Range
  - Tank Design (insulation, in ground, cover)
  - Structure Insulations impact on energy use
- Passive Control -- Greenhouses, Inside/Outside Air Supply, use of Shade Cloth
- Active Control -- Heat Exchangers, Space & Submersible Heaters, Maintenance Requirements

#### System Management Nitrogen Species: TAN, NO<sub>2</sub>, NO<sub>3</sub> & Denitrification

- Be aware of low salinity on nitrogen species toxicity
- It is common to express inorganic nitrogen compounds by their nitrogen content, e.g., NH<sub>4</sub>+-N (ionized ammonia-nitrogen), NH<sub>3</sub>-N (un-ionized ammonianitrogen) -- the sum of the two is oftentimes called total ammonia-nitrogen (TAN) or simply ammonia, NO<sub>2</sub>-N (nitrite-nitrogen), & NO<sub>3</sub>-N (nitrate-nitrogen)

#### Ammonia

A soluble end-product of protein catabolism excreted in un-ionized form (NH<sub>3</sub>) which is toxic to shrimp -- be aware of your test kit!

## System Management Ammonia

- The concentration of each of the two forms is pH, temperature, & salinity dependent
- For example: at salinity of 30 ppt, pH 7.0, & temp. of 28°C, less than 1% of the TAN is in the NH<sub>3</sub> (toxic) form compare to 87% in pH 10
- Can be removed by algal (micro & macro) photosynthesis, oxidation to nitrite & nitrate by autotrophic bacteria, & direct conversion to microbial biomass by heterotrophic bacteria

## **Ammonia Removal:** Heterotrophic Systems

 $NH_{4}^{+} + 1.18 \overset{(Glucose)}{C_{6}}H_{12}^{+}O_{6}^{+} + \overset{(Alkalinity)}{HCO_{3}^{-}} + 2.06 O_{2}^{-} \rightarrow C_{5}^{(Bacteria)}H_{7}O_{2}N + 6.06 H_{2}O + 3.07 CO_{2}$ 

- The increase in microbial biomass production is 40 times greater, consumption of O<sub>2</sub> & CO<sub>2</sub> production are higher than the nitrification process
- If kept as *fully heterotrophic*, large efforts & resources are needed to maintain these systems
- To operate properly the systems require constant supply of organic carbon & large amount of oxygen

#### Ammonia Removal

- As demonstrated, heterotrophic bacteria incorporate ammonia-N directly into microbial biomass (e.g., no generation of NO<sub>2</sub> or NO<sub>3</sub>)
- When using 35% CP feed, only about 1/3 of the dissolve organic carbon requires by the heterotrophic bacteria is available from the feed
- To assimilate all of the available ammonia-N, supplementation of dissolve organic C is needed
- To convert 1 g of TAN into heterotrophic bacteria biomass you need 6 g of organic carbon

Use of Organic C for Ammonia Removal The *Heterotrophic System* **Examples:** Assuming: 40 m<sup>3</sup> TK with 4 mg/L TAN in the water *Molasses* (24%): 1,000 ml molasses = 1,300 g - 312 g C (1,300 x 24%)TAN in the tank: 160 g (4 x 40,000) Organic Carbon needed: 960 g  $(160 \times 6)$ Molasses needed: 3.08 L (960 / 312) or 4.004 kg (3.08 x 1.3)

*White Sugar* (43% *C*):

1 kg white sugar = 430 g C

White sugar needed: 2.23 kg (960 / 430)

## **Recommended Use of Organic Carbon**

- To prevent high levels of ammonia in the culture tank when nitrifying bacteria were not established
- To avoid algal-dominated water in the culture tank
- Gradual application to prevent sharp DO decreases
- Operator must have the capacity to quickly increase DO in the culture tank

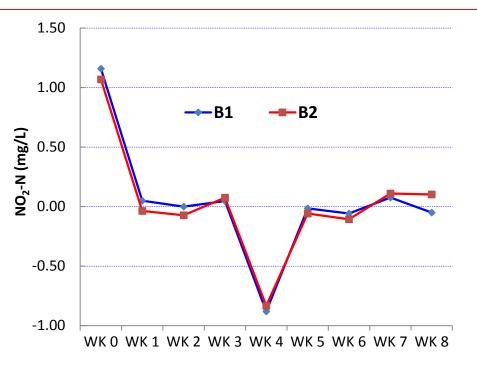


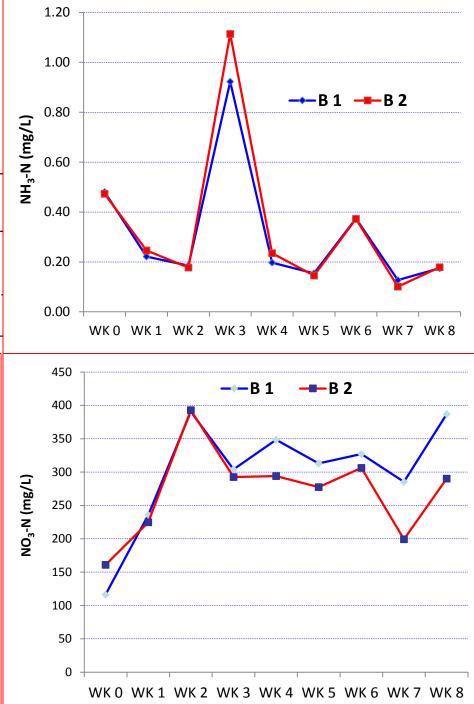


#### Ammonia Removal:

#### **Autotrophic Nitrification Systems**

 $NH_4^+ + 1.83 O_2 + 1.97 HCO_3^- \rightarrow 0.024 C_5H_7O_2N + 0.976 NO_3^- + 2.9 H_2O + 1.86 CO_2$ 


Require supply of ammonia, oxygen & inorganic C in the form of alkalinity & adjustments of pH


# Targeting a Mixotrophic State in which:1/3 of the bacteria are Heterotrophic & 2/3 Autotrophic

- When a *Mixotrophic State* is reached -- no organic carbon addition is required to control TAN & Nitrite
- Nitrification can be enhanced using commercial nitrifying bacteria (such as *FritzZyme 9*, *KI-Nitrifier*) and/or floc inoculation
  After Ebeling et al. (2006)

#### *Nitrogen Species* in *Litopenaeus vannamei* GO trial with 3.6 g juveniles stocked at 500/m<sup>3</sup>

| RW  | Harvest (g) | Growth | Sur.  | Yield      | FCR  |
|-----|-------------|--------|-------|------------|------|
|     | (g)         | (g/wk) | (%)   | $(kg/m^3)$ | ГСК  |
| 1   | 22.76       | 2.13   | 80.2  | 9.20       | 1.43 |
| 2   | 22.67       | 2.12   | 78.2  | 8.86       | 1.53 |
| Av. | 22.72       | 2.12   | 79.5% | 9.03       | 1.48 |





## System Management Nitrogen Species Toxicity

- Salinity Impact
  - Increased toxicity of ammonia, nitrite & nitrate with the decrease in salinity
  - Nitrite toxicity can be avoided either by maintaining a heterotrophic or mixotrophic systems
- No nitrate issue in heterotrophic system
   Nitrate build-up in a mixotrophic system requires removal

#### System Management -- Nitrate Removal Denitrification

- A four-step anaerobic microbial process that chemically reduces NO<sub>3</sub> to N<sub>2</sub>
  - NO<sub>3</sub> is reduced to NO<sub>2</sub>, which then is reduced to N<sub>2</sub>O with a final step of reduction to N<sub>2</sub>
  - To avoid H<sub>2</sub>S production it requires adequate source of organic C, redox potential (-50 to +50 mV), DO < 2 mg/L, NO<sub>3</sub> (10-50 mg/L), pH (7.0-8.5), & temp. (25-32°C)
  - In a perfectly balanced system, most of the alkalinity lost during nitrification can be restored

## System Management -- Nitrate Removal

Other Options: Anammox (anaerobic ammonium oxidation)

A process by which chemoautotrophic bacteria combine ammonium & nitrite under anoxic conditions to produce N<sub>2</sub>

#### **Photosynthesis**

Predominantly by macroalgae

## System Management pH, Alkalinity & Particulate Matter pH

- Levels decrease over time
- Requires adjustments to maintain optimal microbial activities
- Alkalinity
  - Consumed mainly by nitrifying bacteria (use of 7.14 mg CaCO<sub>3</sub> for every 1 mg of TAN oxidized to NO<sub>3</sub>-N
  - Requires adjustment to maintain optimal nitrification activity

## System Management - Alkalinity

- Chemicals that can be used to increase alkalinity: sodium & potassium bicarbonate (NaHCO<sub>3</sub> & KHCO<sub>3</sub>), sodium carbonate (Na<sub>2</sub>CO<sub>3</sub> - Soda ash), potassium & calcium carbonate (K<sub>2</sub>CO<sub>3</sub> & CaCO<sub>3</sub> - Agricultural lime)
- Bicarbonates are the most effective, safe, & easy to dissolve, followed by Soda ash
- These chemicals are readily available & have a long shelf life - Na<sub>2</sub>CO<sub>3</sub> is generally cheaper & more efficient (less is required to raise alkalinity) than NaHCO<sub>3</sub>, but is more likely to form a precipitate in the water
- Some liming materials, such as CaO, Ca(OH)<sub>2</sub>, & CaMg(OH)<sub>4</sub> - caustic, difficult to dissolve & can cause large increases in pH

## System Management Particulate Matter

- Biofloc systems are characterized by continued generation of particulate organic matter (POM) to include: feed leftover, feces & microbial biomass
- Monitoring & Control of POM are essential to maintain a healthy biofloc system
- Implications of too high or low concentrations Monitoring Methods:
- Imhoff Cone -- Measures settleable solids (SS, ml/L) Limitations & Optimal Range
- Gravimetric -- Measures total suspended solids (TSS, mg/L) – Limitations & Optimal Range



#### System Management **Particulate Matter** Control:



- > A variety of equipment is available to manage POM in biofloc system to include: Settling tank; Foam fractionator, Swirl separator; Cyclone filter; Drum filter; Sand filter & Bead filter Settling Tanks:
- Remove settleable solids by gravity



- w/o baffles to enhance particle settling
- $\blacktriangleright$  Effective at removing particles > 60 µm in size
- Require regular cleaning

# System Management - Particulate Matter

Foam Fractionators (Protein Skimmers):

- Effective & inexpensive tools for controlling small (< 30 µm) suspended particles & dissolved organic matter
- A constant supply of small air bubbles captures fine particles & some colloidal material from the tank by adsorption
- The thick foam is collected, dewatered & disposed



## System Management Waste Disposal:

- Particulate control in biofloc tanks results in collection of organic matter with high water content
- One method to reduce the water content includes the use of a shallow tank with false bottom where a filter material is placed over the false bottom for water recovery & to enable drying of the POM
   Potential use of the dried material



**Growth Monitoring, Feed & Feed Management** Growth Monitoring:

- Provides info regarding the shrimp performance
- Collect representative samples: use suitable net (mesh & frame size, cast net), Individual vs Group
- Use of observed growth rate, survival, & assumed FCR & to calculate daily ration sizes Assumptions: Population @ Time 0: 50,000; Survival @ Sampling Time: 90%; FCR: 1.4; Observed growth: 1.7 g/wk
  - Calculated Daily Ration Size:
  - 15.3 g/day (50K x 90% x 1.4 x 1.7 / 1,000 / 7)

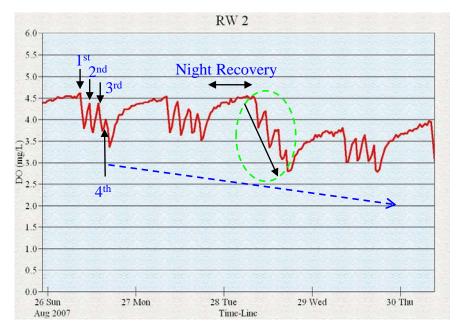
**Feed – Factors to consider** 

- Palatability
- Better shrimp growth in biofloc than in clear water

Feed Quality Impact @ high-density cultures

Improved growth, yield, FCR & POM control

Feed (HI-35 & SI-35) impact in a 67-d GO trial with juveniles (2.66 g) shrimp @ 500/m<sup>3</sup> in biofloc-dominated system (3 n)


| <b>_</b>                   |                                   |                      |
|----------------------------|-----------------------------------|----------------------|
|                            | HI-35                             | <b>SI-35</b>         |
| Final Weight (g)           | <b>22.12 ± 11.35</b> <sup>a</sup> | $19.74 \pm 8.28^{b}$ |
| Growth (g/wk)              | $2.03 \pm 0.01^{a}$               | $1.76 \pm 0.10^{b}$  |
| Total Biomass (kg)         | <b>389.8 ± 1.77</b> <sup>a</sup>  | $348.5 \pm 9.21^{b}$ |
| Yield (kg/m <sup>3</sup> ) | $9.74 \pm 0.04^{a}$               | $8.71 \pm 0.22^{b}$  |
| Foam fractionator (h)      | <b>812</b>                        | 1,253                |
| Settling tank (h)          | 87                                | 391                  |
| Cost (\$/kg)               | 1.75                              | 0.99                 |

#### System Management Feed Management

- Particle Feed Size Selection Extremely important at the early nursery stage for PL with high CV
- Use of iFCR as feed management tool
- Feed Distribution: Automatic Feeders vs Manual
  - Leaching impact on feed quality
  - ► Impact on growth & FCR
  - ► Impact on WQ & DO

#### Four Daily Feedings

- DO Decrease & Recovery from 1<sup>st</sup> (8:30) to 4<sup>th</sup> feeding (16:30)
- Cumulative daily DO reduction trends
- Downward DO trends over consecutive days



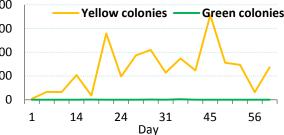
#### Alarm Systems & Power Backup

- Safety Systems -- Theft & Predator Control with Standard Security Measures to prevent entry of unauthorized personnel & predators
- Defensive Responses -- Perimeter fencing, Motion sensors, Security lighting & Cameras, Workers living on-site; Culture tanks in lockable buildings, Electrified wire around the perimeter & Predator traps

#### Alarm Systems & Power Backup

- Low DO Sensors
- Power Outage Sensors
- Low/High Air & Water Temperatures Sensors
- Oxygen Flow Sensors
- Low/High Water levels sensors in culture tanks
- Fire detection
- Installation of circuit interrupters (GFCI) on all circuits to protect staff and equipment
- Availability of backup generator with automatic transfer switch

#### Natural Light & Microalgae


- Avoid exposure of culture medium to strong direct sunlight -- Use shade cloth when needed
- Better shrimp performance when culture medium has access to natural light to promotes limited microalgal growth
- Presence of diatoms in the culture medium were reported to improve shrimp performance & stress tolerance compare to other microalgal species

#### **Biosecurity, Probiotics & Diseases** Biosecurity

- Purchase PL from commercial hatcheries which provide health certificate
- Limit access of visitors to culture tanks
- Use foot baths and hand sterilizers
- Minimize moving equipment & tools between culture tanks
- Prevent access of disease carriers such as crustaceans, insects, & birds

#### **Probiotics**

- Use of probiotics with proven performance before stocking & during both the nursery and the growout production phases
- Weekly or twice a week monitoring of pathogenic bacteria in the culture medium using TCBS agar plates & Chromagar when needed
- Adjust probiotic application frequency & dosage based on the level of pathogenic bacteria in the culture medium
- Application of several probiotics 5,000 if needed



Diseases

- Use PL from a hatchery that provides health certificate with reliable testing methods
- Request the hatchery to provide PL scoring sheet together with the health certificate
- Avoid shrimp exposure to suboptimal water quality conditions such as Low DO, High/Low Temperatures, Low/High pH, High TSS & SS, High TAN, NO<sub>2</sub>, NO<sub>3</sub>, H<sub>2</sub>S, & High Light Intensity

Design and Operation of Super-Intensive Biofloc-Dominated Systems for the Production of Pacific White

Shrimp

Litopenaeus vanname.



- The Texas A&M AgriLife Research Experience By:

Tzachi M. Samocha, David I. Prangnell, Terrill R. Hanson, Granvil D. Treece, Timothy C. Morris, Leandro F. Castro and Nick Staresinic



# **The Manual**

- Objective: Encourage expansion of sustainable
   BFD as developed in the Samocha lab
- Funding: NOAA, through National Sea Grant
- Participants:
- Texas A&M AgriLife Research
- Auburn University
- Florida Organic Aquaculture
- Texas Sea Grant Extension Service









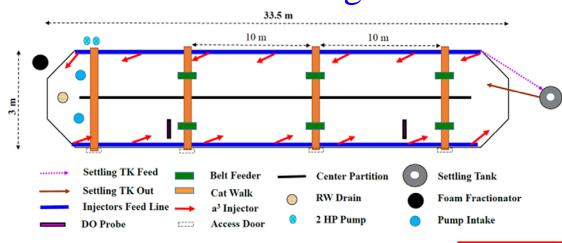


# **The Manual**

- Describes design & operation of the biofloc systems developed over 20 years at Texas A&M AgriLife Research Mariculture Lab
- Emphasizes the most recent L. vannamei production trials
- Written in a non-academic style to target a wider group of stakeholders -- especially entrepreneurs interested in building a pilot BFD system

# The Manual – some highligths

- > 15 Chapters + Excel sheets & short videos
- Chapter 3: Biofloc -- its composition, structure, development, & advantages
- Chapter 5: Site Selection & Production System
- > Chapter 6: System Treatment & Preparation
- Chapter 7: Water Quality Management controlling DO, ammonia, pH, alkalinity, temperature, salinity, suspended solids, turbidity, and waste products in indoor BFD systems


# The Manual – some highligths

- Chapter 8: Nursery Production
- Chapter 9: Grow-out
- Chapter 12: Disease & Biosecurity
- Chapter 13: Economics of BFD
- Chapter 15: Trouble-shooting Table

Nursery production of the Pacific White Shrimp, *Litopenaeus vannamei*, in 100 m<sup>3</sup> RWs under zeroexchange biofloc-dominated system operated with a<sup>3</sup> injectors

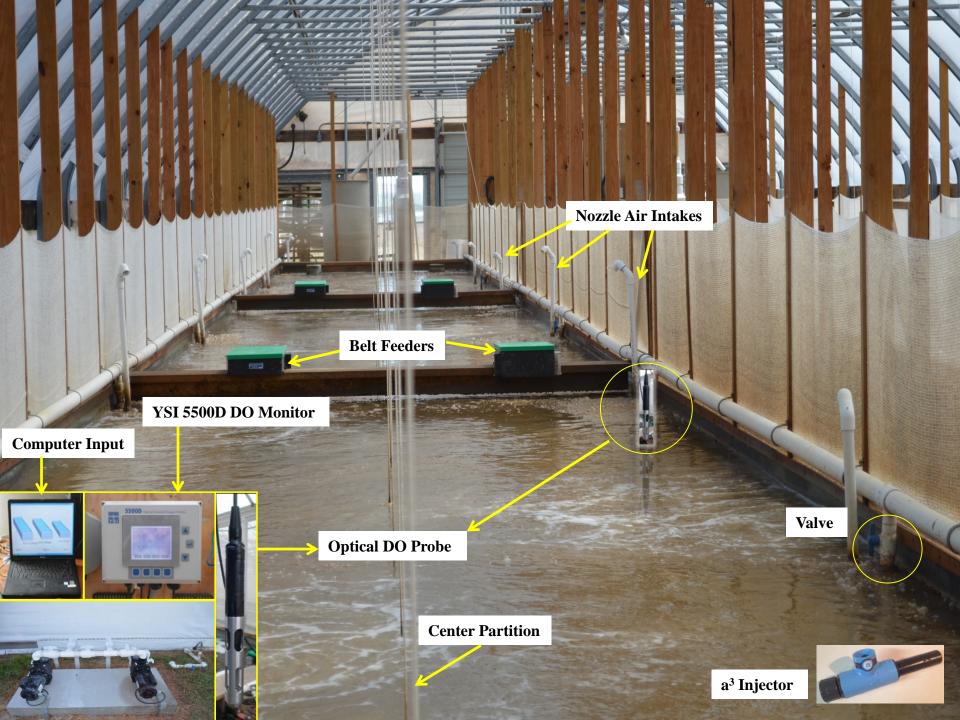
> Tzachi Samocha<sup>1</sup>, Leandro Castro<sup>1</sup>, David Prangnell<sup>1</sup>, Tom Zeigler<sup>2</sup>, Craig Browdy<sup>2</sup>, Tim Markey<sup>2</sup>, Darrin Honious<sup>3</sup>, and Bob Advent<sup>4</sup>

#### **Greenhouse-enclosed 100 m<sup>3</sup> RWs** The Texas A&M AgriLife Research Biofloc System





- $\succ$  Two 100 m<sup>3</sup> RWs
- GH- Shade Cloth & Exhaust Fans
- Online DO Monitoring
- ▶ 14- pump-driven a<sup>3</sup> Injectors/RW
- Two- 2 HP Pumps/RW
- One Foam Fractionator/RW
- One Settling Tank/RW
- > One Digester
















## 62-d Nursery Trial - 100 m<sup>3</sup> RWs

- RWs filled with 90% disinfected NSW and 10% nitrifying bacteria rich seawater adjusted to 30 ppt salinity
- 540 PL<sub>5-10</sub>/m<sup>3</sup> (0.94±0.56 mg; CV: 59.7%!) hybrid Fastgrowth/Taura-resistant
- Continuous feeding from Day 2
- FW to offset losses to evaporation & solids removal
- ➤ Filter pipes fitted with 0.5, 0.8 & 1 mm screens
- ➤ Temp., Sal., DO, pH: 2/d; SS: 1/d; TSS: ≥1/wk; TAN, NO<sub>2</sub>-N, NO<sub>3</sub>-N, VSS, turbidity, RP: 1/wk; Alka.,: adjusted 2/wk using NaHCO<sub>3</sub> to maintain 160 mg/L as CaCO<sub>3</sub>
- Online YSI 5500 DO monitoring with optical probe/RW
- Vibrio monitoring 2/wk using TCBS agar for Yellow & green-colony forming

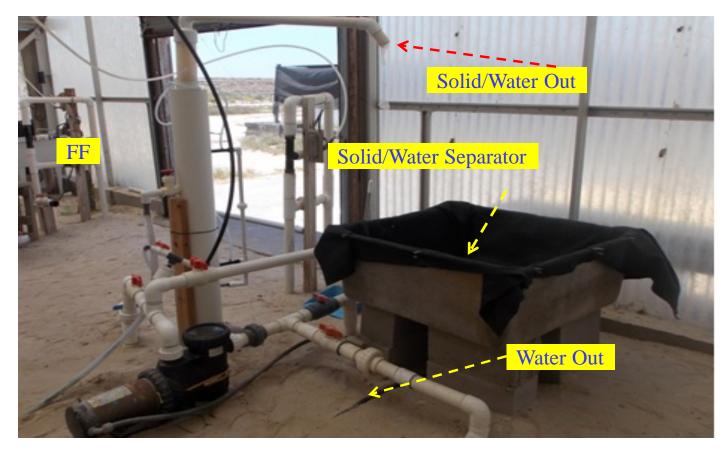
## 62-d Nursery Trial - 100 m<sup>3</sup> RWs

- KI-Nitrifier<sup>TM</sup> (Keeton Industries, Wellington, CO) & white sugar to boost heterotrophic & nitrifying bacterial activities to control nitrogen species
  - ➤ Application: 0.26 mg/L (Day 1, 4, 7, 10 & 32)
- Ecopro® (EcoMicrobials, Miami, FL) application: 0.2 mg/L every 3 d + 0.055 mg/L on Day 1, 0.4 mg/L on Day 39 & 0.3 mg/L on Day 42
  - Probiotic contained stabilized spores of *Paenibacillus polymyxa*, *Bacillus megaterium*, *Bacillus licheniformis* (2 strains) & *Bacillus subtilis* (3 strains), at a minimum concentration of 5.5 x 10<sup>8</sup> CFU/g

#### **Foam Fractionator**

- ➤ Operated with one a<sup>3</sup> injector, flow rate ≈ 28 Lpm, fed from the pump's side loop
- Use of fabric for dewatering and drying of the organic particulate matter

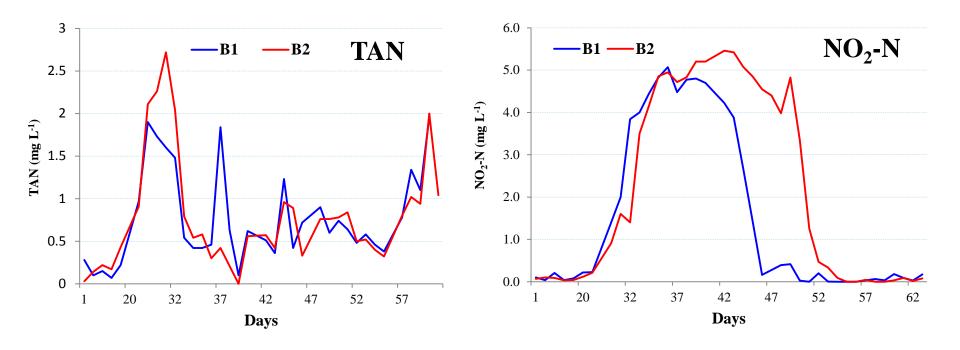
### **Settling Tanks**

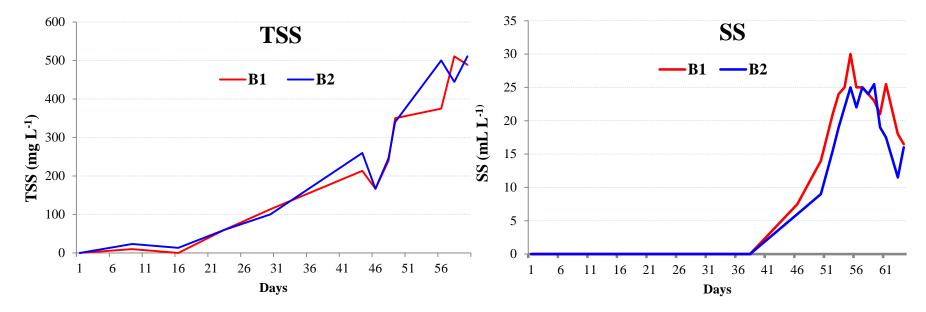

- Conical tank 2 m<sup>3</sup>, flow rate 20 Lpm, fed from the pump's side loop
- Use of fabric for dewatering and drying of the organic particulate matter





## **Solids & Biofloc Control**

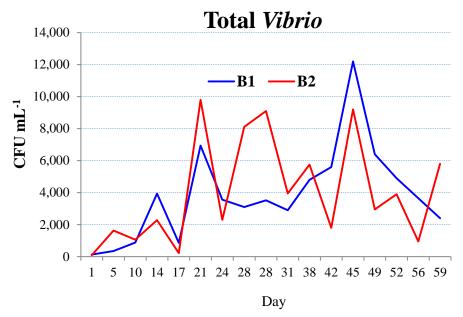

- Maintain TSS levels (250 350 mg/L)
- Waste Disposal

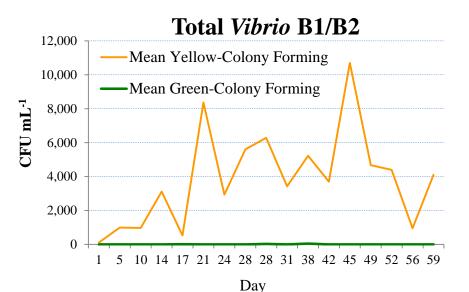



## 62-d Nursery Trial - 100 m<sup>3</sup> RWs

- Shrimp were fed a combination of EZ-Artemia & dry feed (Zeigler Raceway Plus <400 μm) for the first 8 d poststocking and Zeigler Raceway Plus (<400 μm, 400-600 μm, 600-850 μm) + Zeigler Shrimp PL 40-9 with V-pak<sup>TM</sup> (1 mm, 1.5 mm, 2 mm) for the remainder of the trial
- Feed size & rates were adjusted based on shrimp growth & size variation - continuous delivery by belt feeders

|    |      | Temp. (°C) | Sal. (ppt) | DO (mg L <sup>-1</sup> ) | pН  |
|----|------|------------|------------|--------------------------|-----|
| AM | Mean | 26.4       | 30.4       | 6.8                      | 8.1 |
|    | Min  | 22.2       | 29.7       | 4.6                      | 7.6 |
|    | Max  | 29.7       | 31.1       | 8.5                      | 8.5 |
| PM | Mean | 26.8       | 30.4       | 6.6                      | 8.1 |
|    | Min  | 22.9       | 28.6       | 4.4                      | 7.6 |
|    | Max  | 30.2       | 31.1       | 7.9                      | 8.5 |




## 62-d Nursery Trial – 100 m<sup>3</sup> RWs

Green colony-forming Vibrio concentrations remained below 50 CFU/mL and less than 2% of the yellow colony-forming concentrations throughout the trial







Summary of nursery production in two 100 m<sup>3</sup> raceways with *Litopenaeus vannamei* stocked at  $540 \text{ PL}_{5-10}/\text{m}^3$ 

| RW         | Yield      | Av. Wt. | Max  | Min | CV   | Sur. | FCR  | Sugar   |
|------------|------------|---------|------|-----|------|------|------|---------|
|            | $(kg/m^3)$ | (g)     | (g)  | (g) | (%)  | (%)  |      | (kg/RW) |
| <b>B</b> 1 | 3.43       | 6.49    | 11.9 | 0.6 | 35.6 | 97.8 | 0.81 | 33.4    |
| B2         | 3.28       | 6.43    | 10.5 | 0.5 | 31.0 | 94.6 | 0.81 | 33.1    |

> Low temp. for the 1<sup>st</sup> three wks resulted a in long trial

- PL high size variation required frequent monitoring of individual weight to determine feed particle size
- The high variation may have prevented full expression of the shrimp growth potential
- > High size variation continued throughout the harvest

# Conclusion

- Preparing nitrifying bacteria rich water ahead of stocking prevented PL exposure to high TAN & Nitrite
- The use of probiotic may have contributed to the low FCR. A follow-up controlled study is needed urgently
- Use of TCBS agar plates served as a good tool to monitor non- and pathogenic *Vibrio* in culture medium
- Although the a<sup>3</sup> injectors were used with very small PL, shrimp were not damaged
- One 2 hp pump was sufficient to maintain high DO (4.4-8.5 mg L<sup>-1</sup>) at biomass load of 3.43 kg shrimp m<sup>-3</sup> with no need for oxygen supplementation
- $\succ$  a<sup>3</sup> injectors provided adequate mixing of the biofloc